Membrane palmitoylated protein 2 is a synaptic scaffold protein required for synaptic SK2-containing channel function.
نویسندگان
چکیده
Mouse CA1 pyramidal neurons express apamin-sensitive SK2-containing channels in the post-synaptic membrane, positioned close to NMDA-type (N-methyl-D-aspartate) glutamate receptors. Activated by synaptically evoked NMDAR-dependent Ca(2+) influx, the synaptic SK2-containing channels modulate excitatory post-synaptic responses and the induction of synaptic plasticity. In addition, their activity- and protein kinase A-dependent trafficking contributes to expression of long-term potentiation (LTP). We have identified a novel synaptic scaffold, MPP2 (membrane palmitoylated protein 2; p55), a member of the membrane-associated guanylate kinase (MAGUK) family that interacts with SK2-containing channels. MPP2 and SK2 co-immunopurified from mouse brain, and co-immunoprecipitated when they were co-expressed in HEK293 cells. MPP2 is highly expressed in the post-synaptic density of dendritic spines on CA1 pyramidal neurons. Knocking down MPP2 expression selectively abolished the SK2-containing channel contribution to synaptic responses and decreased LTP. Thus, MPP2 is a novel synaptic scaffold that is required for proper synaptic localization and function of SK2-containing channels.
منابع مشابه
Coupled activity-dependent trafficking of synaptic SK2 channels and AMPA receptors.
Small conductance Ca(2+)-activated K(+) type 2 (SK2) channels are expressed in the postsynaptic density of CA1 neurons where they are activated by synaptically evoked Ca(2+) influx to limit the size of EPSPs and spine Ca(2+) transients. At Schaffer collateral synapses, the induction of long-term potentiation (LTP) increases the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AM...
متن کاملP20: The Role of Protein Kinases in Memory
When an experience is encrypted into a long-lasting memory, it is believed that specific sets of neurons in the brain of the animal undergo changes including the strengthening of preexisting synapses and the growth and maintenance of new synaptic connections. These activity-dependent synaptic changes appear to require the coordination of a variety of cellular processes in spatially separated ce...
متن کاملExpression of the SK2 calcium-activated potassium channel is required for cholinergic function in mouse cochlear hair cells.
Efferent inhibition of cochlear hair cells is mediated by 'nicotinic' cholinergic receptors functionally coupled to calcium-activated, small conductance (SK2) potassium channels. We recorded from cochlear hair cells in SK2 knockout mice to evaluate further the role of this channel in efferent function. Since cholinergic inhibitory synapses can be found on inner or outer hair cells, depending on...
متن کاملMPP2 is a postsynaptic MAGUK scaffold protein that links SynCAM1 cell adhesion molecules to core components of the postsynaptic density
At neuronal synapses, multiprotein complexes of trans-synaptic adhesion molecules, scaffold proteins and neurotransmitter receptors assemble to essential building blocks required for synapse formation and maintenance. Here we describe a novel role for the membrane-associated guanylate kinase (MAGUK) protein MPP2 (MAGUK p55 subfamily member 2) at synapses of rat central neurons. Through interact...
متن کاملN-Terminal Palmitoylation of PSD-95 Regulates Association with Cell Membranes and Interaction with K+ Channel Kv1.4
Ion channels and associated signal transduction cascades are clustered at excitatory synapses by PSD-95 and related PDZ-containing proteins. Mechanisms that target PSD-95 to synaptic membranes, however, are unknown. Here, PSD-95 is shown to partition as an integral membrane protein in brain homogenates. Metabolic labeling of brain slices or cultured cells demonstrates that PSD-95 is modified by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- eLife
دوره 5 شماره
صفحات -
تاریخ انتشار 2016